Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

Econ 318 - Econometrics

Richard Schwinn

Spring 2015 MW 4:15-5:30 p.m. Section 1

Text: A Guide to Basic Econometric Techniques by Elia Kacapyr

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

What is Econometrics?

It means economic measurement.

Terminology

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

- 1. e.g. (exempli gratis) $\equiv example$
- 2. i.e. (id est) $\equiv that \ is$

Bernoulli Trials

Notes 01

Preliminaries

Econometric Methodology

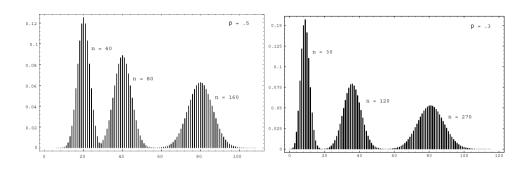
An Example

Jobs

Terminology

References

Consider a Bernoulli trials process with probability p for success on each trial. Let $X_i=1$ or 0 according as the ith outcome is a success or failure. Then $S_n=X_1+X_2+\cdots+X_n$ counts the number of successes in n trials.


Preliminaries

Econometric Methodology

An Example

Terminology

References

Some observations:

- ▶ The maximum values appeared near the expected value np, which drags the graph to the right.
- ightharpoonup These maximum values approach 0 as n increased, which causes the spikes graphs to flatten out.
- \blacktriangleright However, if we properly scale S_n , something interesting will happen.

Notes 01 Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

Standardized Sums

The standardized sum of S_n is given by

$$S_n^* = \frac{S_n - np}{\sqrt{np(1-p)}}. (1)$$

 S_n^* always has expected value 0 and variance 1.

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

We rescale the distribution histogram of S_n for n=270 and p=.3 and compare it with standard normal density.

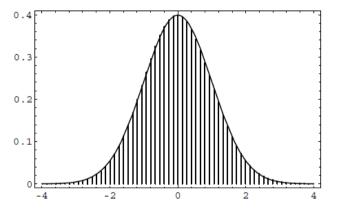


Figure 1: Distribution histogram of S_n^* compared with standard normal density

Observations

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

References

Terminology

- From the previous plot, we observe that the distribution of S_n^* is approximately N(0,1).
- Instead of standardizing S_n , if we standardize the average $A_n = (X_1 + \cdots + X_n)/n$, we will have a similar result, namely the standardized average A_n^* is approximately N(0,1).
- ▶ Roughly speaking, if we standardize the sum (or the average) of iid random variables, when *n* is large, the standardized sum (or average) will be approximately standard normal.

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

Quick Review

- 1. Former basketball player Michael Jordan is 77 inches tall. Assuming that heights follow approximately a normal distribution with mean 70 and standard deviation $\sigma = 3$,
 - 1.1 What is his corresponding z-score?
 - 1.2 What proportion of men are taller than him?
- 2. For each problem below draw a picture of the normal curve and shade the area you have to find. Let Z represent a variable following a standard normal distribution.
 - 2.1 Find the proportion that is less than z = 2.00.
 - 2.2 Find the proportion that is between z = .13 and z = 1.75.
 - 2.3 Find the proportion that is greater than z = 1.86.
 - 2.4 Find the z-score for the 64^{th} percentile.
 - 2.5 Find the z-scores that bound the middle 50% of all data
 - 2.6 Find the z-score for the 24^{th} percentile.

Preliminaries

Econometric Methodology Principles of Data Reduction Scientific

An Example

Jobs

Terminology

References

Principles of Data Reduction

An experimenter uses information in a sample $X_1, ..., X_n$ to make inferences about an unknown parameter θ . If n is large then the sample may be hard to interpret.

- Any statistic $\beta_0(X_1, X_n)$, defines a form of data reduction.
- ▶ If one uses only the observed value of the statistic $\beta_0(X_1,...,X_n)$, rather than the whole observed sample $(X_1,...,X_n)$ then one will treat any two samples $(x_1,...,x_n)$ and $(y_1,...,y_n)$, that satisfy $\beta_0(x_1,...,x_n)=\beta_0(y,...,y_n)$, as equal
- even though the actual sample values may be different in some ways.

Note that

- ► Capital letter are used to denote random variables.
- Lower case letters are used for sample data,
- ▶ Greek letters are typically used for parameters and their estimates.

Preliminarie

Econometric Methodology

Principles of Data Reduct Scientific Method

An Example

Jobs

Terminology

References

The **Scientific Method** is the systematic use

- ▶ of observation, measurement, and experiment
- ▶ in the formulation testing, and modification of hypotheses.
- ▶ It is different from other methods in that scientists seek to let reality speak for itself.
- Econometrics is a specific form of the scientific method
 - ► First we state an economic theory. For example, When income goes up, consumer spending goes up, but not by as much. (i.e. people save some of their increased income)
 - ▶ Then we test the theoretical predictions empirically (i.e. using data)

Keynsian Law of Consumption

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

- ▶ In words: When income increases, consumer spending goes up, but not by as much.
- Mathematically

 $Consumption = Autonomous \ Consumption + mpc * Income$

or for short

$$C_i = C_a + mpc * Y_i$$

Keynsian Law of Consumption

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

$$C_i = C_a + mpc * Y_i$$

Recall that Greek is typically used for parameters we will be estimating. ϵ_i is used to represent all other unidentified factors important to consumption.

$$C_i = \beta_0 + \beta_1 * Y_i + \epsilon_i$$

What does Keyness law imply about β_1 ?

$$0 < \beta_1 < 1$$

Three Data Formats

Notes 01

Preliminaries

Econometric Methodology

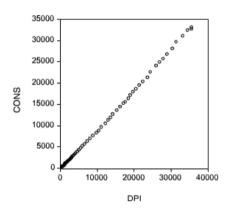
An Example

Jobs

Terminology

Cross-section Data			Time Series Data			Panel Data			
Indiv. 1 2 3	C 76k 22k 56k 45k	Y 83k 23k 57k 36k	Year 2002 2003 2004 2005	C 24.6k 25k 25.8k 25.4k	Y 26.2k 26.5k 27.2k 27.3k	Year 2002 2002 2003 2003	Indiv. 1 1 2 2	C 76k 77k 22k 29k	Y 83k 82k 23k 35k

Preliminaries


Econometric Methodology

An Example

Jobs

Terminology

- ➤ This is a random sample of incomes and levels of consumption taken in 2010.
- ▶ What kind of dataset is displayed?

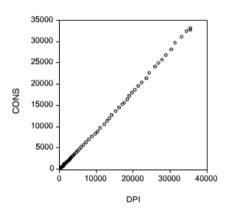
Preliminaries

Econometric Methodology

An Example

Jobs

Terminology


References

$$C_i = \beta_0 + \beta_1 * Y_i$$

Let's consider possible estimates of the model parameters. Suppose we think that people spend 100% of their income and that they have no other sources of wealth.

What would our null hypothesis, H_0 , (the theory to be tested) look like?

$$H_0: C_i = 0 + 1.0 * Y_i$$

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

$$H_0: C_i = 0 + 1.0 * Y_i$$

This implies that

$$\beta_0 = 0$$

and

$$\beta_1 = 1.$$

In order to test the H_0 , I've estimated the model using the crown jewel of econometrics: **Operation of Least Squares (OLS)**. OLS is also known as regression.

$$C_i = -0.16 + 0.93Y + e_i$$

The coefficients are only estimates and not necessarily true so we use *hats* to denote estimated parameters.

$$\widehat{\beta}_0 = -0.16$$

and

$$\widehat{\beta}_1 = 0.93.$$

Preliminaries

Econometric Methodology

An Example

Jobs Terminology

r crimmolog,

References

$$H_0: C_i = 0 + 1.0 * Y_i$$

We estimated

$$C_i = -0.16 + 0.93Y + e_i$$

which implies

$$\widehat{\beta_0} = -0.16 \neq 0$$

and

$$\widehat{\beta}_1 = 0.93 \neq 1.$$

- For now we don't have the statistical tools to test whether these estimates offer evidence contradicting the H₀.
- ► Instead, we on to the next use of modeling techniques: Forecasting

Forecasting

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

$$C_i = -0.16 + 0.93Y + e_i$$

- ► If I earned 40k last year, what is my expected spending?
- Simply plug 40k into the estimated model.

$$C_i = \widehat{\beta}_0 + \widehat{\beta}_1(40k) + e_i$$

$$C_i = -0.16 + 0.93(40k) + e_i$$

 $C_i = 37.2$

Problem

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

	Hours	GPA		
Problem	2	2		
	2	3		
	3	4		

Plot the points and draw a line through the dots so the vertical distance between the dots and the line equals zero. Can we do this with other lines?

Jobs

Notes 01

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

- Moneyball (Statisticians taking jobs from scouts)
- Marketing Analytics (Statisticians taking jobs from marketing professionals)
- ▶ Risk Analysis (Statisticians replacing bank loan officers)

Terminology

Notes 01

Preliminaries

Econometric Methodology

An Example

Terminology

- 1. Cross-sectional data Observations on multiple entities at one point in time.
- 2. **Econometrics** Testing economic hypotheses with statistical techniques.
- 3. **Econometric model** A mathematical expression of the relationship between variables.
- 4. **Ordinary least-squares** A technique for fitting lines to scattergrams.
- 5. Panel data Observations on multiple entities over time.
- 6. **Scattergram** A graph showing corresponding pairs of values for two variables.
- 7. Time-series data Observations on an entity over time

Preliminaries

Econometric Methodology

An Example

Jobs

Terminology

References

▶ A Guide to Basic Econometric Techniques by Elia Kacapyr